
Optimizing Safety and Efficacy of BTK Inhibitors Within the Health System With the Use of Digital Strategies

Faculty Information

Anthony J. Perissinotti, PharmD, BCOP

Clinical Pharmacist Specialist, Hematology

Clinical Team Leader, Hematology/Oncology

Adjunct Clinical Assistant Professor

University of Michigan – Michigan Medicine

Ann Arbor, Michigan

This activity is supported by educational grants from Pharmacyclics LLC., an AbbVie Company and Janssen Biotech, Inc. and BeiGene.

Educational Objectives

After completion of this activity, participants will be able to:

- Compare the efficacy of oral BTK inhibitors across B-cell malignancies including a focus on emerging clinical data
- Identify pharmacists' responsibilities for monitoring and managing cardiac adverse effects specific to different health-system practice types
- Determine the pharmacist's role in implementing digital and telemedicine technologies within the health system to improve adherence and provide remote patient monitoring and management

Setting the Stage

The Shifting Treatment Paradigm in B-cell Malignancies

Overview of B-cell Non-Hodgkin Lymphoma (NHL)

Indolent

Features of Both

Aggressive

Very Aggressive

Follicular lymphoma (FL), chronic lymphocytic leukemia (CLL), marginal zone lymphoma (MZL), Waldenström macroglobulinemia (WM)

Mantle cell lymphoma (MCL)

Diffuse High grade, NOS

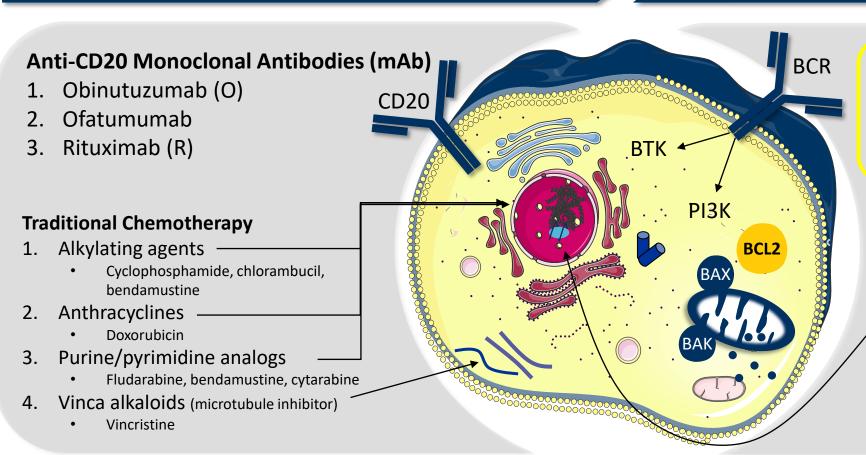
large B-cell (ie, "double hit") Burkitt
lymphoma (DLBCL)

102,810

estimated new cases of NHL + CLL diagnosed in the United States, 2021

25,040

estimated deaths from NHL + CLL in the United States, 2021


NOS, not otherwise specified.

Siegel RL, et al. CA Cancer J Clin. 2021;71(1):7-33; Al-Hamadani M, et al. Am J Hematol. 2015;90(9):790-795.

Trends in Oral Oncolytic Use

Intravenous (IV) Therapies

Oral Therapies

BTK Inhibitors

- 1. Acalabrutinib
- 2. Ibrutinib
- 3. Zanubrutinib

PI3K Inhibitors

- 1. Copanlisib (IV)
- 2. Duvelisib
- 3. Idelalisib
- 4. Umbralisib

BCL2 Inhibitor

1. Venetoclax

EZH2 Inhibitor

1. Tazemetostat

BCR, B-cell receptor.

National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology. B-Cell Lymphomas, v2.2021.

Foundations of Evidence for the Use of BTK Inhibitors in B-cell Malignancies

BTK Inhibitor Mechanism of Action

The B-cell Receptor (BCR)

-Regulates differentiation, proliferation, and chemotaxis

Overactivation

-The BCR in B-cell malignancies is overstimulated and B cells are protected by the microenvironment

Bruton's Tyrosine Kinase (BTK)

-The overactivated BCR signals through BTK leading to uncontrolled proliferation/malignant B cell

Ibrutinib/Acalabrutinib/Zanubrutinib

-Covalently binds to a cysteine residue at position 481 on BTK, which abrogates downstream signaling through BTK

LYN **BTK** BTK inhibitor PLCy2 pathway PKC MAPK/MEK/ERK pathway

Adapted from Marini BL, et al. J Oncol Pharm Pract. 2017;23(7):502-517.

BTK Inhibitors in NHL

Agent	FDA Approval	Class	Dose	Route	Supplied
Acalabrutinib	MCL (2nd+) CLL (1st+)	BTK inhibitor (2nd generation)	100 mg twice daily	Oral	100-mg capsule
Ibrutinib	CLL (1st+), MCL (2nd+) WM (1st+), MZL (2nd+)	BTK inhibitor	MCL: 560 mg daily CLL: 420 mg daily	Oral	70- and 140-mg capsules; 140-, 280-, 420-, and 560-mg tablets
Zanubrutinib	MCL (2nd+)	BTK inhibitor (2nd generation)	160 mg twice daily or 320 mg daily	Oral	80-mg capsule

Imbruvica. Prescribing information. Pharmacyclics LLC; December 2020; Calquence. Prescribing information. AstraZeneca Pharmaceuticals LP; November 2019. Brukinsa. Prescribing information. BeiGene USA, Ltd; November 2019.

Drug and Comorbidity Interactions With BTK Inhibitors

Agent	Metabolism	CYP Inhibitors	CYP Inducers	Renal	Hepatic
*Acalabrutinib	CYP3A4 (major) P-gp, BCRP	Strong: avoid Moderate: ↓ 100 mg <u>daily</u>	Avoid (个 200 mg twice daily if cannot be avoided)	No changes	No changes Avoid in severe
Ibrutinib	CYP3A4 (major) CYP2D6 (minor)	Voriconazole: ↓ 140 mg daily? Posaconazole: ↓ 70 mg daily Moderate: ↓ 280 mg daily	Avoid	No changes	Child-Pugh A: ↓ 140 mg Child-Pugh B: ↓ 70 mg Child-Pugh C: Avoid
Zanubrutinib	CYP3A4 (?)	Strong: ↓ 80 mg daily Moderate: ↓ 80 mg twice daily	Avoid	No changes	Severe: ↓ 80 mg twice daily

Imbruvica. Prescribing information. Pharmacyclics LLC; December 2020; Calquence. Prescribing information. AstraZeneca Pharmaceuticals LP; November 2019. Brukinsa. Prescribing information. BeiGene USA, Ltd; November 2019.

^{*}Avoid proton pump inhibitors; take acalabrutinib 2 hours before H₂RAs and antacids (reduces acalabrutinib AUC 40%-50%).

BTK Inhibitors: Past and Present

Disease State	Past Treatment	Pivotal Study	Present Treatment
CLL (1st line)	Chemotherapy (FCR or BR) Obinutuzumab/chlorambucil	Phase 3: ELEVATE-TN Phase 3: E1912 and A041202 Phase 3: CLL14	Acalabrutinib +/- O Ibrutinib +/- anti-CD20 mAb Venetoclax + O
MCL (2nd line)	Intensive chemotherapy (Nordic) Less intensive chemotherapy (BR)	Phase 2: ACE-LY-004 Phase 2: PCYC-1104 Phase 2: BGB-3111-206	Acalabrutinib Ibrutinib +/- R Zanubrutinib
MZL (2nd line)	Chemotherapy (BR)	Phase 2: PCYC-1121-CA Phase 2: UNITY-NHL	Ibrutinib Lenalidomide + R Umbralisib
WM (1st line)	Chemotherapy (BR) Rituximab Bortezomib-based	Phase 3: iNNOVATE Phase 3: ASPEN	Bortezomib-based BTK inhibitor (Ibrutinib or zanubrutinib*) Bendamustine/R Rituximab

^{*}Zanubrutinib is not FDA approved or included within the NCCN Guidelines. It is utilized in clinical practice off-label. A PDUFA date of October 2021 is expected.

Shanafelt TD, et al. *N Engl J Med*. 2019;381(5):432–443; Woyach JA, al. *N Engl J Med*. 2018;379(26):2517–2528; Sharman JP, et al. *Lancet*. 2020;395(10232):1278-1291; Fischer K, et al. *N Engl J Med*. 2019;380(23):2225-2236; Wang M, et al. *Lancet*. 2018;391(10121):659-667; Wang M, et al. *Leukemia*. 2019;33(11):2762-2766; Song Y, et al. *Clin Cancer Res*. 2020;26(16):4216-4224; Noy A, et al. *Blood*. 2017;129(16):2224-2232; Noy A, et al. *Blood Adv*. 2020;4(22):5773-5784; Fowler NSF, et al. *J Clin Oncol*. 2019;37:7506; Dimopoulos MA, et al. *N Engl J Med*. 2018;378(25):2399–2410; Owen RG, et al. *Lancet Haematol*. 2020;7(2):e112–e121; Tam CS et al. *Blood*. 2020;136(18):2038-2050.

ASPEN Trial

Population: 1st Line WM

Treatment: Zanubrutinib vs ibrutinib

Efficacy: no significant differences (OS, PFS, response rates)

Safety: ↓ atrial fibrillation, hemorrhage, pneumonia;

↑ neutropenia

GENUINE Trial

Population: R/R high-risk CLL

Treatment: Ibrutinib +/- ublituximab

Efficacy: Improved ORR and PFS with combo

AVO Trial

Population: 1st line CLL

Efficacy: 100% ORR

Treatment: Acalabrutinib +

obinutuzumab + venetoclax

Safety: No TLS from venetoclax

Safety: No unexpected AEs

MAGNOLIA Trial

Population: R/R MZL

Treatment: Zanubrutinib

Efficacy: 60% ORR

Safety: 7.3% grade ≥3 neutropenia

BTK Inhibitors:

Recent Data and Future

SEQUOIA Trial (Arm C)

Population: 1st line CLL with del(17p)

Treatment: Zanubrutinib

Efficacy: 94.5% ORR;

18-month PFS: 88.6%

Safety: 12.9% grade ≥3 neutropenia

ELEVATE-RR Trial

Population: R/R high-risk CLL

Treatment: Acalabrutinib vs ibrutinib

Efficacy: Noninferior PFS

Safety: ↓ atrial fibrillation

AE, adverse effect; PFS, progression-free survival; ORR, overall response rate; R/R, relapsed/refractory; TLS, tumor lysis syndrome.

Brown JR, et al. ASH 2020: Abstract 1306; Opat S, et al. ASH 2020: Abstract 339; Tam CS, et al. *Blood*. 2020;136(18):2038-2050; Sharman JP, et al. *Lancet Haematol*. 2021:S2352-3026(20)30433-6; Davids MS, et al. ASH 2020: Abstract 2216; Calquence met primary efficacy endpoint in head-to-head trial against ibrutinib in chronic lymphocytic leukaemia. News release. AstraZeneca; January 25, 2021. Accessed March 18, 2021. astrazeneca.com/media-centre/press-releases/2021/calquence-met-primary-endpoint-against-ibrutinib.html

Hot off the Press in CLL!

1st Line Combination Studies

GLOW Trial (Phase III)

Treatment: Ibrutinib + Venetoclax versus Clb + O

Efficacy: PFS not reached vs 21 months

Safety: Neutropenia, diarrhea, hypertension

CAPTIVATE Trial (Phase II)

Treatment: <u>Ibrutinib + Venetoclax</u>

Efficacy: PFS 95% and OS was 98% @ 2 years

Safety: Neutropenia, hypertension

Relapsed/Refractory Comparative Studies

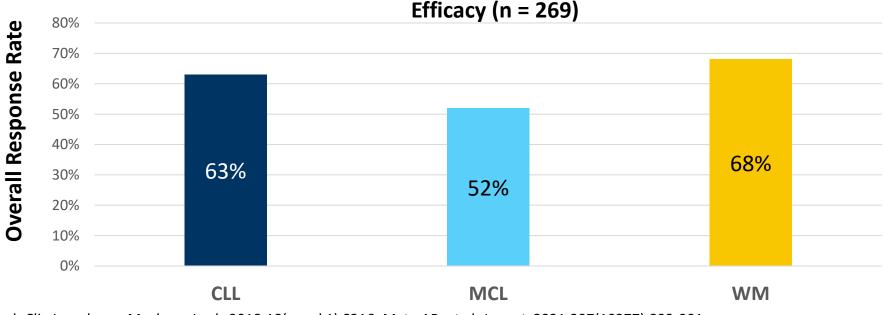
ELEVATE-RR Trial (Phase III)

Treatment: <u>Acalabrutinib</u> vs Ibrutinib Efficacy: Non-inferior PFS (both 38 months) Safety: ↓ a.fib, hypertension, arthralgia, diarrhea, bleeding; ↑ headache and cough

ALPINE Trial (Phase III)

Treatment: Zanubrutinib vs Ibrutinib Efficacy: PFS 94.9% vs 84.0% @ 1 year

Safety: \downarrow a. fib, major bleeding, infections, AEs


leading to DC; ↑ neutropenia

Clb, chlorambucil

Kater A, et al. EHA 2021. Abstract LB1902; Ghia P, et al. ASCO 2021. Abstract 7501; Byrd JC, et al. ASCO 2021. Abstract 7500; Hillmen P, et al. EHA 2021. Abstract LB1900.

Future Approaches: Pirtobrutinib (Loxo-305)

- Highly potent and selective noncovalent BTK inhibitor
 - >300-fold selectively for BTK vs 370 other kinases
- Phase 1/2 BRUIN study (R/R B-cell malignancies; many with <u>prior BTK inhibitor</u> <u>exposure</u>)
 - Safety (n = 323): covalent BTK inhibitor-associated toxicities rarely observed (longer follow-up needed)

Brandhuber B, et al. Clin Lymphoma Myeloma Leuk. 2018;18(suppl 1):S216; Mato AR, et al. Lancet. 2021;397(10277):892-901.

Examining the Approach to Bleeding and Cardiac Toxicities Associated With BTK Inhibitor Therapy

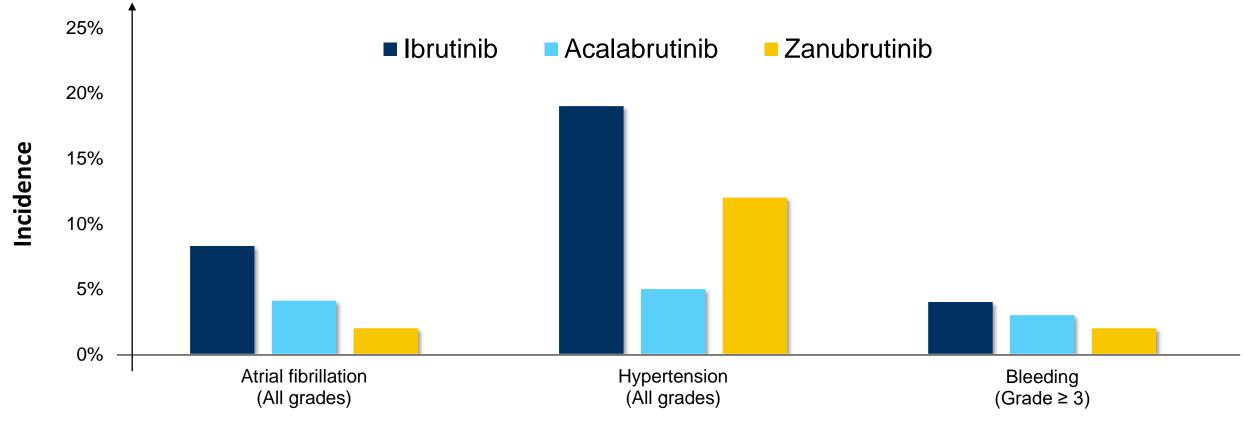
Discontinuation Rates of Ibrutinib

21%

ibrutinib discontinuation rate due to toxicity

Mato AR, et al. *Haematologica*. 2018;103(5):874-879; Brown JR. *Blood*. 2018;131(4):379-386; Maddocks KJ, et al. *JAMA Oncol*. 2015;1(1):80-87.

On- and Off-Target Effects


Kinase	Expression/Toxicity	Ibrutinib	Acalabrutinib	Zanubrutinib
ВТК	Lymphocytes, cardiac, platelets	+++	++	+++
TEC	Platelet effects, T-cell priming	++	_	+
EGFR	Rash, cardiac, diarrhea	++	_	+
вмх	Cardiac	+++	+	+++
ERBB4	Cardiac	++	+	++

- + = increased potency
- = minimal/no inhibition

Berglöf A, et al. *Scand J Immunol*. 2015;82(3):208; Shatzel JJ, et al. *J Thromb Haemost*. 2017;15(5):835-847; Bye AP, et al. *Blood Adv*. 2017;1(26):2610-2623; Kaptein A, et al. *Blood*. 2018;132:1871.

Toxicity Comparison:

Bleeding and Cardiac AEs from Prescribing Information*

AE, adverse effect.

Imbruvica. Prescribing information. Pharmacyclics LLC; December 2020; Calquence. Prescribing information. AstraZeneca Pharmaceuticals LP; November 2019. Brukinsa. Prescribing information. BeiGene USA, Ltd; November 2019.

^{*}Cross trial comparisons should be interpreted with caution.

Atrial Fibrillation With BTK Inhibitors: Incidence

Overall Risk

- ≈10% incidence at 3 years (with ibrutinib)
- 2. Median time to onset: ≈8 months

2nd Generation BTK Inhibitor

- Incidence lower with acalabrutinib and zanubrutinib
- 2. ASPEN (WM): 15% ibrutinib vs 2% zanubrutinib
- ELEVATE-RR (CLL):
 ibrutinib >
 acalabrutinib

Scoring Tool for Individual's Risk

Factor	Point
Age (years)	
• 65-74	2
• ≥75	3
Male	1
Valvular disease	2
Hypertension	1

Calculating Individual's Risk

Risk Score	5-Year Atrial Fibrillation Rate
0-1	0.4%
2-3	2.8%
4	7.6%
≥ 5	17.9%

Brown J, et al. *Haematologica*. 2017;102(10):1796-1805; Wiczer TE, et al. *Blood Adv.* 2017;1(20):1739-1748; Tam CS, et al. *Blood*. 2020;136(18):2038-2050; Calquence met primary efficacy endpoint in head-to-head trial against ibrutinib in chronic lymphocytic leukaemia. News release. AstraZeneca; January 25, 2021. Accessed March 18, 2021. astrazeneca.com/media-centre/press-releases/2021/calquence-met-primary-endpoint-against-ibrutinib.html

Atrial Fibrillation With BTK Inhibitors: Management

Mechanism

- Not fully elucidated
 - Off-target
 - Cardiac PI3K inhibition and TEC
 - On-target
 - BTK
- Risks include cardiac risk factors, acute infections, prior history of atrial fibrillation

Management

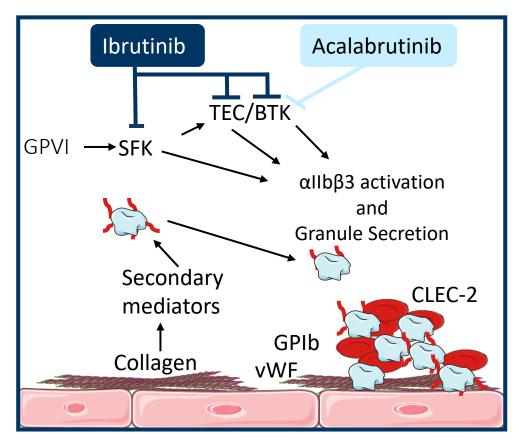
- Educate patient on risk and when to call
- Rate control (β blocker preferred as verapamil and diltiazem are CYP inhibitors)
 - Monitor digoxin level if used with P-gp inhibitor
 - Rhythm control (careful selection due to drug interactions)
- Controllable atrial fibrillation: continue therapy (some consider switching to alternative BTK inhibitor)
- Uncontrollable atrial fibrillation: consider alternative therapy

Common questions: Can ibrutinib be used in a patient who already has atrial fibrillation? How often is atrial fibrillation controlled versus need to be switch therapy? Do dose reductions help? Should therapy be held?

Imbruvica. Prescribing information. Pharmacyclics LLC; December 2020; Calquence. Prescribing information. AstraZeneca Pharmaceuticals LP; November 2019. Brukinsa. Prescribing information. BeiGene USA, Ltd; November 2019; McMullen JR, et al. *Blood*. 2014;124(25):3829-3830; de Weerdt I, et al. *Haematologica*. 2017;102(10):1629-1639; Brown JR. *Blood*. 2018;131(4):379-386.

Anticoagulation Management Considerations

Prevent Bleeding


Discuss risk vs benefit based on HAS-BLED score and other factors

avoid warfarin

de Weerdt I, et al. Haematologica. 2017;102(10):1629-1639; Brown JR. Blood. 2018;131(4):379-386.

receiving BTK inhibitors)

Major Bleeding: Mechanism

Aggregation, adhesion, and stable thrombus formation

- BTK, SFK (src family kinases), and TEC are involved in several platelet activation and adhesion functions:
 - GPVI, CLEC-2, GPIb, integrin αIIbβ3

- TEC compensates when BTK is inhibited/dysfunctional
 - BTK inhibition alone leads to mildly diminished platelet activation
 - Blocking both BTK and TEC leads to significant platelet inhibition, platelet aggregation, and thrombus stability

Bye AP, et al. *Blood Adv*. 2017;1(26):2610-2623.

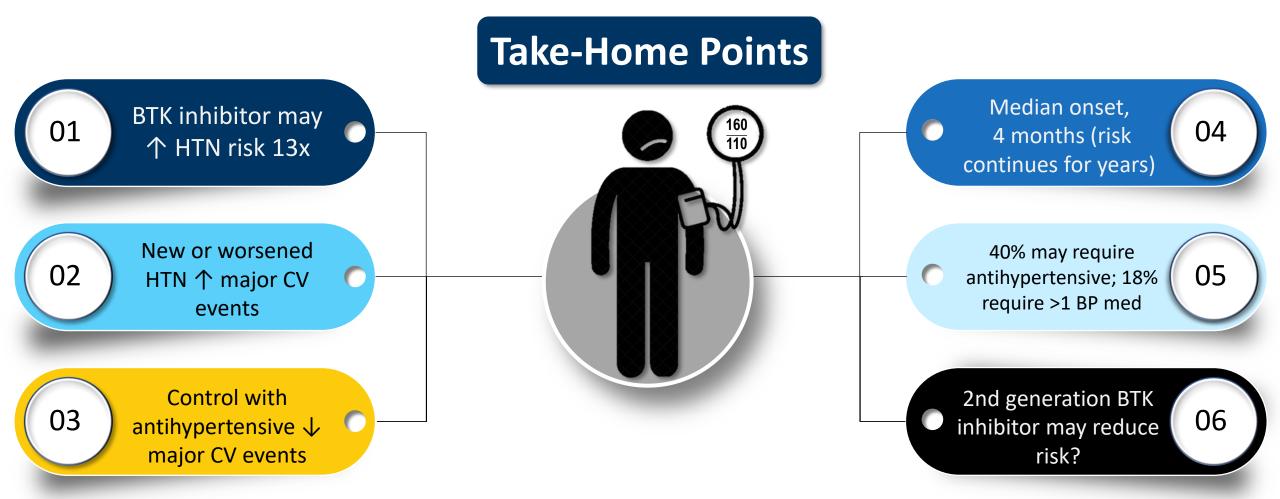
Bleeding With BTK Inhibitors: Management

Real-World Risk (Multivariable Analysis)

Elevated INR (>1.5)
4.6x

Antiplatelet plus anticoagulant vs neither **20x**

Conflicting data: Jones JA, et al → low bleed incidence despite antiplatelet and/or anticoagulant (comorbidities may be more predictive).


Management

- Hold prior to and after invasive procedures for 3 (minor) to 7 days (major)
 - Reversible impact within 1 week of discontinuation
 - Platelet transfusion may reverse antiplatelet effects
- Anticoagulants/antiplatelets are not contraindications
 - Avoid warfarin
 - Consider stopping other medications

Common questions: Does ibrutinib need to be discontinued for mild bleeding? Should acalabrutinib or zanubrutinib be started in a patient at high risk for bleed?

Imbruvica. Prescribing information. Pharmacyclics LLC; December 2020; Calquence. Prescribing information. AstraZeneca Pharmaceuticals LP; November 2019. Brukinsa. Prescribing information. BeiGene USA, Ltd; November 2019; Mock J, et al. *Clin Lymphoma Myeloma Leuk*. 2018;18(11):755-761; Jones JA, et al. *Br J Haematol*. 2017;178(2):286-291; de Weerdt I, et al. *Haematologica*. 2017;102(10):1629-1639; Brown JR. *Blood*. 2018;131(4):379-386.

Hypertension from BTK Inhibitors: Incidence

Dickerson T, et al. *Blood*. 2019;134 (22):1919-1928.

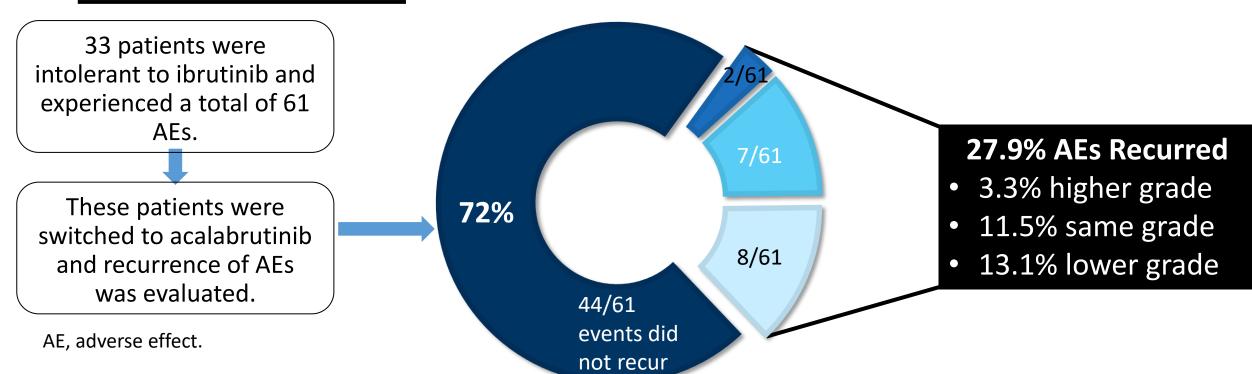
BP, blood pressure; CV, cardiovascular; HTN, hypertension.

Hypertension from BTK Inhibitors: Management

Mechanism

- Several hypotheses (likely on- and offtarget)
 - PI3K-p110α inhibition
 - VEGF downregulation
 - Nitric oxide reduction
 - Endothelial cell dysfunction
- Risks include cardiac risk factors, prior history of HTN

Management


- Monitor BP throughout treatment
- Standard management (no specific agent)
- Treatment discontinuation not necessary in most
- Adequate management of hypertension mitigates CV events
- Check drug interactions (MV analysis):
 - 2-fold increase risk of developing HTN
 - 3-fold increase risk of worsening HTN

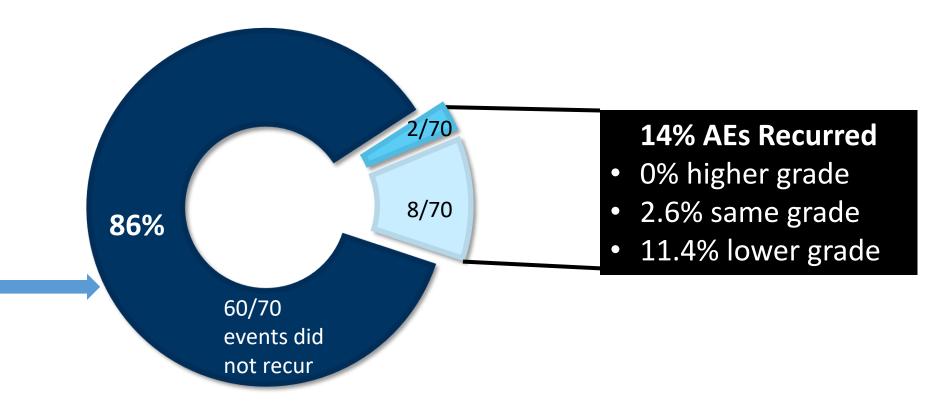
Common questions: Should an anti-hypertensive be started pre-emptively? How often should blood pressure be monitored?

VEGF, vascular endothelial growth factor.

Imbruvica. Prescribing information. Pharmacyclics LLC; December 2020; Calquence. Prescribing information. AstraZeneca Pharmaceuticals LP; November 2019. Brukinsa. Prescribing information. BeiGene USA, Ltd; November 2019; Dickerson T, et al. *Blood*. 2019;134 (22):1919-1928.

Switching to Another BTK Inhibitor: Acalabrutinib for Ibrutinib-Intolerant Patients

Lingering questions: Did all ibrutinib "intolerance" need to be stopped (definition was vague)? With management discussed, could ibrutinib have been restarted with similar success?


Awan, FT et al. Blood Adv. 2019;3(9):1553-1562.

Switching to Another BTK Inhibitor: <u>Zanubrutinib</u> for Ibrutinib- or Acalabrutinib-Intolerant Patients

32 patients were intolerant to ibrutinib or acalabrutinib and experienced a total of 70 AEs.*

*4 events from acalabrutinib.

These patients were switched to zanubrutinib and recurrence of AEs was evaluated.

Lingering question: Which agent is better tolerated – acalabrutinib or zanubrutinib?

Shadman M. ASH 2020: Abstract 2947. Accessed March 18, 2021. www.beigenemedical.com/CongressDocuments/Shadman%20Zanubrutinib%20BGB-3111-215%20ASH%20Poster%202020.pdf

Dose Modifications for Nonhematologic AEs

STARTING DOSE

1st grade 3/4 occurrence **INTERRUPT** then

Ibrutinib: 420-560 mg QD **Acalabrutinib:** 100 mg BID **Zanubrutinib:** 320 mg QD

(or 160 mg BID)

Once symptoms resolve to grade 1, restart at starting dose

2nd grade 3/4 occurrence **INTERRUPT** then

Ibrutinib: reduce by 140 mg **Acalabrutinib:** starting dose **Zanubrutinib:** 160 mg QD

(or 80 mg BID)

3rd grade 3/4 occurrence **INTERRUPT** then

4th grade 3/4 occurrence **INTERRUPT** then

discontinuations required for grade 1/2*

No dose adjustments or

*Would consider if persistent/impacting quality of life.

Ibrutinib: reduce by 140 mg **Acalabrutinib:** 100 mg QD **Zanubrutinib:** 80 mg QD

DISCONTINUE if toxicity persists

Imbruvica. Prescribing information. Pharmacyclics LLC; December 2020; Calquence. Prescribing information. AstraZeneca Pharmaceuticals LP; November 2019. Brukinsa. Prescribing information. BeiGene USA, Ltd; November 2019.

Implementing Digital Technology Tools Within Health-Systems for Improving Adherence and Patient Support

The Patient Journey and The Pharmacist

Clinical History

- 63-year-old patient with MCL presents with relapsed disease
- Previously achieved remission following chemotherapy
 years prior

Current Medications

• Omeprazole, aspirin, insulin, metoprolol, apixaban, lisinopril

LYMPHOMA CLINIC

Diagnosis is made

Pharmacist included in treatment decision

Pharmacist provides education on safety and efficacy

PHARMACY

Pharmacist team helps with medication access (co-pay assistance, prior authorization, appeals, delivery, etc)

Education reinforcement

HOME

Patient administers oral medication daily

Patient has been educated and empowered to identify AEs

Patient to call/message AEs, new symptoms, and new medications **MONITORING**

Various touchpoints by pharmacist team:

- Within 1 week
- 14 days later
- Every 3-6 months PRN

Mackler E, et al. J Oncol Pract. 2019;15(4):e346-e355.

Impact of Nonadherence on Outcomes

History of Present Illness

- Patient began acalabrutinib 100 mg orally twice daily for relapsed MCL 1 month following initial visit
- Often forgets evening dose
- Disease response slower than expected

Patient Concerns

Does missing doses impact my response?

These data should be discussed at each point of patient's treatment journey.

Evaluation of ibrutinib nonadherence on outcomes in MCL, CLL, and other B-cell malignancies.

Study 1: Barr PM, et al.

- 1. Higher BTK inhibitor dose intensity improved PFS
- 2. Missing ≥8 consecutive days = worse PFS

Study 2: Williams AM, et al.

- 1. Lower adherence (<80%) = worse PFS and OS
- 2. Dose interruptions >1 week = worse PFS
- Nonadherence can occur early (within 8 weeks)

Barr PM, et al. *Blood*. 2017;129(19):2612-2615; Williams AM, et al. *Clin Lymphoma Myeloma Leuk*. 2019;19(1):41-47.

Barriers to Adherence

Patient Characteristics

- Age
- Gender
- Quality of life/ functional status
- Time from diagnosis

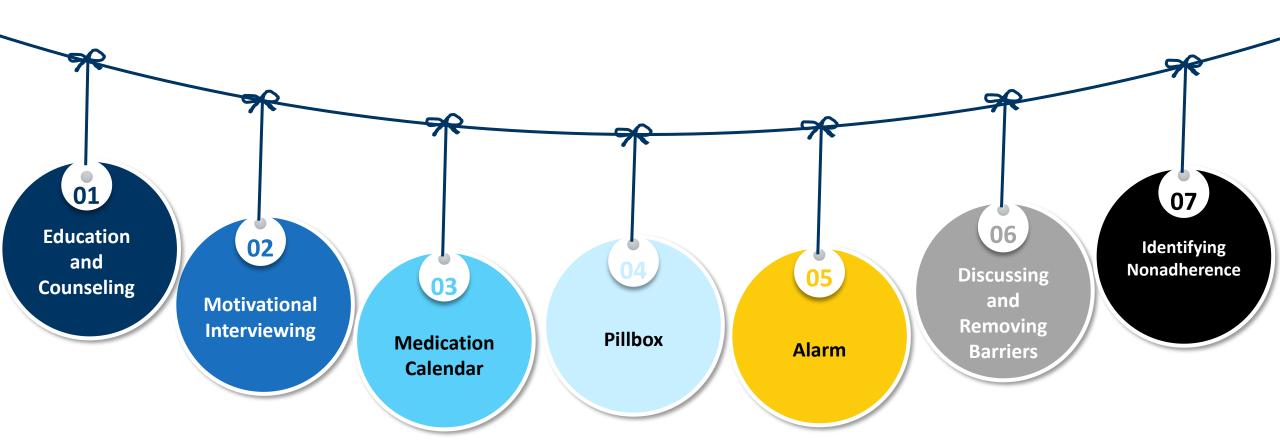
Disease Characteristics

- Complexity
- High prescription burden
- Time from diagnosis
- Concomitant disease

Treatment Characteristics

- Dose burden
- AEs
- Financial toxicity
- Treatment duration
- Physical properties (shape, size, taste)

Health Care Factors


- Quality of the patient-provider relationship
- Communication
- Education
- Medication access

Socioeconomic Factors

- Financial
- Perception of nonadherence consequences
- Medical literacy
- Faith in physician and treatment
- Perceived benefit

Traditional Solutions to Promote Adherence

Ryan R, et al. Cochrane Database Syst Rev. 2014;2014(4):CD007768.

Digital Tools to Promote Adherence

Digital Tool	How It Works	Examples
Virtually observed therapy	Smartphone camera captures patient administration Verified by remote professional or AI/analytics technology	Emocha Mobile Health, sureAdhere
Smart pill bottles	Sensor on pill bottle or cap tracks medication use	Adhere Tech, glowCap, Pillsy, Medikyu, doseSmart, Nomi
Smart pill dispensers, smart home medication assistant	Technology to store and dispense medication, integrate data from wearable devices, offer teleservice option with virtual chats with a pharmacist	Pillo, Catalia Health, spencer Health Solutions, mediPENSE
Smart pill organizers	Pill boxes with sensor tracks use of medication	TowerView Health, medMinder, Vaica, MedSentry, PillDrill, Tricella
Medication adherence apps	Phone apps remind patient and log administration	Pill monitor, Medisafe pill reminder, Round Health, CareZone, MedHelper pill reminder, Dosecast
Virtual visits	Scheduled visits to assess response, toxicity, and adherence May be triggered by visits from patient-reported outcomes (PROs)	Video chat integrated into EMR

Aungst TD. The Digital Apothecary; 2019. Accessed February 9, 2021. the digital apothecary.com/pharmacy-innovation-news/2019/2/14/digital-health-for-pharmacists-e-book; ASCO. Other mobile applications. Cancer.Net. Published 2020. Accessed February 9, 2021. cancer.net/navigating-cancer-care/managing-your-care/other-mobile-applications; Charbonneau DH, et al. *Digit Health*. 2020;6:2055207620905413; Marotta R. 5 digital tools for improving medication adherence. PharmacyTimes. Published December 5, 2018. Accessed February 9, 2021. pharmacytimes.com/conferences/ashpmidyear2018/5-digital-tools-for-improving-medication-adherence; Park JYE, et al. *JMIR Mhealth Uhealth*. 2019;7(1):e11919.

Traditional Solutions, Digital Tools, and PROs Improve Patient Outcomes

Traditional solutions and PROs

- Compared pharmacist care program vs usual care
- Reduced grade ≥3 AEs
- Improved PFS

Combined PROs with digital technology

- Fewer admissions to ED and hospital
- 63% reported severe symptoms during study
- Remained on therapy longer
- Improved health-related quality of life

Hough Study Zerbit Study **Basch** Study **Basch** Study 2

Traditional solutions and PROs

- Improved nausea/vomiting post chemotherapy
- Reduced unplanned health care visits related to CINV
- Reduced overall unplanned health care visits

Combined PROs with digital technology

- Symptoms/toxicity caught and managed early
- Remained on therapy longer
- Improved OS

CINV, chemotherapy-induced nausea and vomiting.

Hough S, et al. *J Clin Oncol*. 2020;38(15 suppl):2001; Zerbit J, et al. *Ann Hematol*. 2020;99(7):1615-1625; Basch E, et al. *JAMA*. 2017;318(2):197-198; Basch E, et al. *J Clin Oncol*. 2016;34(6):557-565.

Incorporating Digital Tools into the Patient Journey

LYMPHOMA CLINIC

PHARMACY

HOME

MONITORING

Standardize digital prescribing

Virtual education or prerecorded, standardized, interactive education

Navigating access (ideally inhouse but specialty services and manufacturer patient support programs all via portal, email, text messaging)

EMR-integrated text messaging (2-way preferred)

Virtual visits

Navigating access (took 1 month for patient to receive drug)

Digital pill packs and pill bottles filled (TowerView Health, medMinder, etc)

Teach patient how to set up and use cellphone app (ie, Pill monitor, Medisafe pill reminder, Round Health, etc)

VDOT (watch patient administer)

PROs through EMR, text messaging, or app integrated into EMR

VDOT (artificial intelligence to assess administration)

Smart pill bottles, dispensers, assistant (Pillo, Catalia Health, spencer Health Solutions, etc)

Smartphone apps

Virtual visits

Gather and quantify PROs and adherence via text, apps, EMR (auto-populate into note)

Virtual visits

Assess toxicity

Teach patient how to set up and use cellphone app (ie, Pill monitor, Medisafe pill reminder, Round Health, etc)

VDOT

VDOT, video directly observed therapy.

Aungst TD. The Digital Apothecary; 2019. Accessed February 9, 2021. the digital apothecary.com/pharmacy-innovation-news/2019/2/14/digital-health-for-pharmacists-e-book; ASCO. Other mobile applications. Cancer.Net. Published 2020. Accessed February 9, 2021. cancer.net/navigating-cancer-care/managing-your-care/other-mobile-applications; Marotta R. 5 digital tools for improving medication adherence. PharmacyTimes. Published December 5, 2018. Accessed February 9, 2021. pharmacytimes.com/conferences/ashpmidyear2018/5-digital-tools-for-improving-medication-adherence

Conclusion

- BTK inhibitors have revolutionized the treatment of B-cell malignancies
- BTK inhibitors exhibit unique toxicities that are generally manageable
- Cardiac toxicities are a leading contributing cause to nonadherence
- Pharmacists have several tools (traditional methods, PROs, digital technology) available that may improve patient adherence
- Improving adherence improves patient outcomes and quality of life

Additional Resources

Journal Articles

Lasica M, Tam CS. Management of Ibrutinib Toxicities: a Practical Guide. Curr Hematol Malig Rep. 2020 Jun;15(3):177-186.

Pineda-Gayoso R, Alomar M, Lee DH, Fradley MG. Cardiovascular Toxicities of Bruton's Tyrosine Kinase Inhibitors. Curr Treat Options Oncol. 2020 Jun 30;21(8):67.

Websites	
The Digital Apothecary	www.thedigitalapothecary.com/
Michigan Oncology Quality Consortium – Oral Oncolytics	MOQC.org/resources/oral-oncolytics/